
We theoretically analyze 
Interval Bound Propagation 
(IBP) in Certified Training:

introduce a novel metric quantifying 
propagation tightness (PT) 

show that IBP training increases PT 

find that PT regularizes weight signs 

empirically confirm our theoretical 
analysis
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Network Certification with Interval Bound Propagation (IBP)

Robustness: . 

Interval Bound Propagation (IBP): compute output bounds 
layer-wisely, e.g., . 

Layer-wise Approximation : 
apply optimal approximation layer-wisely, i.e., IBP 
approximation. 

Optimal Approximation : smallest hyper-
box  such that .

f(x′￼)i* − f(x′￼)i ≥ 0,∀i, x′￼ s.t. ∥x′￼− x∥∞ ≤ ϵ

[a, b] + [c, d] = [a + c, b + d]

Box†( f, Bϵ(x)) = [z†, z†]

Box*( f, Bϵ(x))
[z*, z*] f(x′￼) ∈ [z*, z*], ∀x′￼∈ Bϵ(x)

Propagation Invariance: a network is propagation invariant if 
, i.e., IBP is exact. 

Propagation Tightness: , i.e., the 
ratio of optimal and layer-wise box sizes.

Box†( f, Bϵ(x)) = Box*( f, Bϵ(x))
τ = (z* − z*)/(z† − z†)

Explicit IBP for Deep Linear Network (DLN)

• For DLN  , the size of approximations are:

 and . 

• DLN with all non-negative weights is propagation invariant.

f =
L

∏
k=1

W(k)

z* − z* = 2 ΠL
k=1W

(k) ϵ z† − z† = 2 (ΠL
k=1 W(k) ) ϵ

Propagation Invariance
• A two-layer DLN   is propagation invariant if and 

only if  for all  or  for all . 

• A two-layer DLN   is not propagation invariant if
 

for some . 

•  ➔ not propagation invariant.

f = W(2)W(1)

W(2)
i,k ⋅ W(1)

k,j ≥ 0 k W(2)
i,k ⋅ W(1)

k,j ≤ 0 k

f = W(2)W(1)

(W(2)W(1))i,j (W(2)W(1))i,j′￼
(W(2)W(1))i′￼,j (W(2)W(1))i′￼,j′￼

< 0

i, j

W(2)W(1) = ( 1 2
−3 4)

Tightness at Initialization
• For two-layer DLN with weights sampled from i.i.d. Gaussian 

distribution and hidden dimension , tightness decreases in 
squared root order of : . 

• For -layer DLN randomly initialized with i.i.d. Gaussian and 
minimum hidden dimension , tightness decreases in 
exponential order of : .

d
d τ = Θ(d−1/2)

L
d

L τ = O(d−⌊L/4⌋)
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IBP Increases Tightness

If  deviates too 
much from , 
then the gradient difference 
between IBP and standard loss 
is aligned with an increase in 
tightness, i.e., IBP-trained 
models have larger tightness.

Box†( f, Bϵ(x))
Box*( f, Bϵ(x))Box Reconstruction Error

For linearly separable data, PCA 
(optimal) weights lead to linear 
growth of layer-wise box size and 
sqrt growth of optimal box size.
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Results for ReLU networks

IBP Training w.r.t. Network Width and Depth

Effect of Input Radius on 
Accuracies and Tightness

Width-scale Rule Predicts Better Models

Accuracies and Tightness for 
Different Methods
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