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Background: Robustness and Certification Definitions Separation

Adversarial Examples: Neural networks can be fooled into misclassification Encoding: Let f: X—Y be a function and Prior Work:
by imperceptible input perturbations. No RelLU network can IBP-express convex CPWL(/, R) functions.

h: X—4Y be a neural network. We say # No single-layer ReLU network can IBP-express monotone CPWL(/, R)
encodes f iff functions.

vV xXeX.

Analysis: 1#D(B) is the D-analysis of #» on B Theorem: Finite ReLU networks can IBP-express

h f PWL(/, R) functi .
denoting the polytope in X'xY containing the set of monotone CPWL(/, R) functions

x | o ‘ x 4 0.007 - e the graph {(x, »(x))lxeB}chP(B) of » on B as

y Depth increases expressivity of IBP-certified
h(x) = “panda’ h(x + 0.007e) = “gibbon” — obtained with D. 1 RelLU networks.

Certification: Local robustness to input perturbations of a network can be Precision: The D-analysis of # Is precise i

certified using convex relaxations. it yields precise lower and upper bounds,
that is for all B

¢.. Box Network & Certfied i1, > 1 [#2(B),h>(B)}=Lf (B), f (B)].

Linear Layer RelLU Layer 7 ’ h(X)=b+z iyl' ReLU(iI (x _xi))!
Expressivity: Let & be a set of functions and V' a set of networks. N can |

D-express & iff vfes 3neN s.t. h encodes f and its D-analysis is precise > with ¥ >0 encoding f, with the minimum number

Theorem: For any convex CPWL function f: 2R,
there exists exactly one network of the form

of neurons such that its DP-0-analysis is precise.

Correct Class: 1

DP-0 is more expressive than IBP.
Theorem: Single Neuron Convex Relaxation Limit

z = max(z,y)

Reachable Set Convex relaxation Theorem: Finite ReLU networks can not A-express | | } Theorem: Let feCPWL(/, R) be convex. For any
convex, monotone, CPWL([0,1]2,R) functions. network 4 of the form

Convex Relaxations for ReLU: h(x)=b+c x+2;y; ReLU(£(x—x))),
Proof: By contradiction. Let f=max: R2 =R. N\ We have that its A-analysis is precise. In

1. Locality: 3 U s.t. all ReLUs are either stable or particular +_i can be chosen freely.
switch activation at x=y.

Box (IBP) [Gehr et al. S&P’18] DeepPoly-0 (DP-0) [DeepPoly POPL19]

A allows more parametrizations to express the

2. The network can be represented recursively as same function compared to DP-0.

h|u=hi{R’L}=hLi-1+VVi ReLU(r,-1),

DeepPoly-1 (DP-1) [DeepPoly POPL'19] , with hO{R,L}=b+Wo x, s.t. all ReLUs switch at X=Y. Theorem: For every network #, there exists a network g such that the DP-0
’ !

1. This network can be Simplified: analysis of » and the DP-1 analysis of g are equivalent.
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Results
Fundamental Question:

A

Certified N T T Novel results are in red or green, previous results in black. M: monotone, C:
accurac Goal . . . | .
y . 008 Training for Cert|f|ab|||ty severely X 38 convex, MC: monotone and convex.

/ reduces accuracy, and thus real- - » X  Relaxation CPWL M-CPWL C-CPWL MC-CPWL

, Certified training world utility, despite best efforts
. [2]. . IBP
Standard training This leads to #(x)=b+w, x+w, y+a ReLU(z). DEEPPOLY-0
Natural acouracy 4. n(xy)=max(x,y) — b=0,w,=0, w=1,a=1. DEEPPOLY-1
A

Multi-Neuron

Analysis directly yields »2(B)=1.5 > 1=max(B).
What Is the expressivity of certified neural networks? RelLU networks can not A-express the set of MC-CPWL functions.




