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Adversarial Examples: Neural networks can be fooled into misclassification 
by imperceptible input perturbations.

Paper & Code

Background: Robustness and Certification Separation

Certification: Local robustness to input perturbations of a network can be 
certified using convex relaxations. 
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Convex Relaxations for ReLU: 

Box (IBP) [Gehr et al. S&P’18] DeepPoly-0 (DP-0) [DeepPoly POPL’19]

DeepPoly-1 (DP-1) [DeepPoly POPL’19]Triangle (Δ) [Ehlers ATVA 2017]

Training for certifiability severely 
reduces accuracy, and thus real-
world utility, despite best efforts 
[2]. 
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Goal

What is the expressivity of certified neural networks?

Fundamental Question:

Encoding: Let 𝑓: 𝒳→𝒴 be a function and 
ℎ: 𝒳→𝒴 be a neural network. We say ℎ 
encodes 𝑓 iff 

ℎ(𝑥)=𝑓(𝑥) ∀ 𝑥∈𝒳.

Analysis: ℎ𝐷(𝐵) is the 𝑫-analysis of ℎ on 𝐵, 
denoting the polytope in 𝒳×𝒴 containing 
the graph {(𝑥, ℎ(𝑥))|𝑥∈𝐵}⊆ℎ𝐷(𝐵) of ℎ on 𝐵 as 
obtained with 𝐷.

Precision: The 𝐷-analysis of ℎ is precise if 
it yields precise lower and upper bounds, 
that is for all 𝐵 

[ℎ𝐷(𝐵),ℎ𝐷(𝐵)]=[𝑓(𝐵),𝑓(𝐵)].

Expressivity: Let ℱ be a set of functions and 𝒩 a set of networks. 𝒩 can
𝐷-express ℱ  iff  ∀𝑓∈ℱ ∃ℎ∈𝒩 s.t. ℎ encodes 𝑓 and its 𝐷-analysis is precise

Theorem: Single Neuron Convex Relaxation Limit

ReLU(𝛾𝑧+𝛼ReLU(𝑧)) ⇝Δ 𝛾′ 𝑧+𝛼′ ReLU(z).

This leads to ℎ(𝑥)=𝑏+𝑤𝒙𝑥+𝑤𝑦𝑦+𝛼 ReLU(z).

4.  ℎ(𝑥,𝑦)=max⁡(𝑥,𝑦)  ⟹ 𝑏=0, 𝑤𝑥=0, 𝑤𝑦=1, 𝛼=1.        

     Analysis directly yields ℎΔ(𝐵)=1.5  >  1=max⁡(𝐵).

Theorem: Finite ReLU networks can not 𝚫-express 
convex, monotone, CPWL([0,1]2,ℝ) functions.

Proof: By contradiction. Let f=max: ℝ2 →ℝ. 
1. Locality: ∃ 𝒰 s.t. all ReLUs are either stable or 

switch activation at 𝑥=𝑦. 

2. The network can be represented recursively as
ℎ|𝒰=ℎ𝑖{𝑅,𝐿}=ℎ𝐿𝑖−1+𝑊𝑖  ReLU(ℎ𝑅i-1), 

     with ℎ0
{𝑅,𝐿}=𝑏+𝑊0 𝑥, s.t. all ReLUs switch at 𝑥=𝑦.

1. This network can be Simplified: 
        𝐯⊤ ReLU(𝒘𝑧)  ⇝Δ 𝛾𝑧+𝛼 ReLU(𝑧)

Results

Novel results are in red or green, previous results in black. M: monotone, C: 
convex, MC: monotone and convex.  

Theorem: Finite ReLU networks can IBP-express 
the set of monotone CPWL(I, ℝ) functions.

Depth increases expressivity of IBP-certified 
ReLU networks.

Theorem: For any convex CPWL function 𝑓: I→ℝ, 
there exists exactly one network of the form

ℎ(𝑥)=𝑏+∑i𝛾𝑖 ReLU(±i (𝑥 −𝑥𝑖)),

with 𝛾𝑖>0 encoding 𝑓, with the minimum number 
of neurons such that its DP-0-analysis is precise.

DP-0 is more expressive than IBP.

Theorem: Let 𝑓∈CPWL(I, ℝ) be convex. For any 
network ℎ of the form

ℎ(𝑥)=𝑏+𝑐 𝑥+∑i𝛾𝑖 ReLU(±𝑖(𝑥−𝑥𝑖)),
We have that its 𝚫-analysis is precise. In 
particular ±_𝑖 can be chosen freely.

Δ allows more parametrizations to express the 
same function compared to DP-0.

ReLU networks can not Δ-express the set of MC-CPWL functions.

Prior Work: 
No ReLU network can IBP-express convex CPWL(I, ℝ) functions. 
No single-layer ReLU network can IBP-express monotone CPWL(I, ℝ) 
functions.

Theorem: For every network ℎ, there exists a network 𝑔 such that the DP-0 
analysis of ℎ and the DP-1 analysis of 𝑔 are equivalent. 


