We introduce CTBench, a unified library and high-quality benchmark for certified training

- Simple interface, easy to use&extend
- Incorporates all state-of-the-art certified training methods
- Establishes a fair comparison across certified training algorithms
- Provides a deep insight into certified models

CTBench: A Library and Benchmark for Certified Training

Yuhao Mao, Stefan Balauca, Martin Vechev

Department of Computer Science

Training Certifiably Robust Neural Networks

Robustness: $f(x')_{i^*} - f(x')_i \ge 0, \forall i, x' \text{ s.t. } ||x' - x||_{\infty} \le \epsilon.$

Certified robustness: mathematically prove the robustness property via autonomous algorithms. Powerful but not scalable to large networks!

Practice: some networks are easier to certify.

Certified training: train neural networks that have both high performance and high certified robustness!

Motivation:

Many certified training algorithms, NO unified library & high-quality evaluation.

The CTBench Library

- model_wrapper = BasicModelWrapper(net, nn.CrossEntropyLoss(), input_dim, device, args)
- model_wrapper = BoxModelWrapper(net, nn.CrossEntropyLoss(), input_dim, device, args)
- model_wrapper = TAPSModelWrapper(net, nn.CrossEntropyLoss(), input_dim, device, args, block_sizes=args.block_sizes, relu_shrinkage=args.relu_shrinkage)
- model_wrapper = DeepPolyModelWrapper(net, nn.CrossEntropyLoss(), input_dim, device, args, use_dp_box=True, loss_fusion=args.use_loss_fusion, keep_fusion_when_test=args.keep_fusion_when_test)
- Easy-to-use interface.
- Clean architecture design.
- Comprehensive & unified.
- Easy to extend.

The CTBench Benchmark

(e) TINYIMAGENET, $\epsilon = 1/255$

 Statistically stable &
significant improvement on
certified performance.
. Composable to electible

(d) CIFAR-10, $\epsilon = 8/255$

 Comparable to algorithmic advances, with only implementation changes.

Understanding Certified Models

