We theoretically analyze
the weakness of a
widely used metric
(ACR) for Randomized

Smoothing
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Background

Randomized smoothing

Cohen et al. Certified adversarial robustness via randomized smoothing.

g(r) = argmax P(f(x +€) = ¢)

AN

Smooth model Base model Gaussian noise

Certified radius

g(x) is adversarially robustin an ¢,
norm neighborhood of x with the
radius R(x)

Average certified radius
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Average Certified Radius i1s a Poor Metric for Randomized Smoothing
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Weakness of ACR

A trivial classifier can achieve infinite ACR
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= m Z R(z,pa)l(g(x) = y)
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As large as you want with enough budget

Selection bias in RS training algorithms

Easy samples contribute much more
to the ACR
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A Poor Metric!

Previous methods implicitly focus on easy data and sacrifice hard data
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Certification results on CIFAR-10

Main Results
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Certification results on ImageNet
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Ablation study (o = 0.25)

discard dataset weight

adverserial | ACR

We exploit the
weakness of ACR and

achieve a SOTA ACR

easy (pa > 0.5) and hard (pa < 0.5) samples for models

trained with different algorithms and o = 0.5, along with 0.0
their relative magnitude (easy / hard). The corresponding 0.50 0.75
ACR 1s provided for reference. PA
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SOTA methods tend to assign greater emphasis to
easy samples than Gaussian training.

SOTA methods gain ACR due to the improvement on easy
data; hard data are consistently under-represented

Replicating ACR Progress WITHOUT Training for General Robustness

Better Metrics

Does not affect ACR Disproportionate contributions to ACR

No effective optimization for easy data

Best certified accuracy across o at each radius

Stop using ACR and try .
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e At the radius of interest, one may identify the most effective method and its associated noise

level to optimize performance on downstream tasks.
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~~ ©® One method is better than another only when it
- has higher ECDF forall p, = 0.5.
e Easy to convert ECDF to the certified accuracy
for every radius and certification budget.
e Convenient to convert an existing certified o
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Gaussian training
Is still the best in
the low p , region!
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