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Empirical Robustness

+ .007 x =
T &gn(VmJ(H?IJy))
“panda” “nematode” g
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et. al., Explaining and Harnessing Adversarial Examples, ICLR'15
Eykholt et. al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR’18



Towards Certified Robustness

Program testing can be used to show the presence
of bugs, but never to show their absence!

(Edsger Dijkstra)

# paper model clean || APGDcg APGDpir FAB  Square AutoAttack | report. reduct.
CIFAR-10 - ¢ = 8/255

1 (Wangetal., 2019) EnsRN 82.39 (0.14) 48.81 49.37 78.61  45.56 (0.20) 51.48 -5.9
2 (Yang et al., 2019) with AT  849(0.6) | 301 3109 . 263(0.85) | 528 -265
3 (Yang et al., 2019) pure 87.2 (0.3) 21.5 24.3 - - 18.2 (0.82) 40.8 -22.6
4 (Grathwohl et al., 2020) JEM-10  90.99 (0.03) 11.69 15.88 63.07 79.32 9.92 (0.03) 47.6 -37.7
5 (Grathwohl et al., 2020) JEM-1 92.31 (0.04) 9.15 13.85 62.71 79.25 8.15 (0.05) 41.8 -33.6
6 (Grathwohletal,2020) JEM-0  92.82(0.05) || 7.19 1263 6648 7312  636(0.06) | 198 -13.4
CIFAR-10 - ¢ = 4/255

1 (Grathwohl et al., 2020) JEM-10  91.03 (0.05) 49.10 52.55 78.87 89.32  47.97 (0.05) 72.6 -24.6
2 (Grathwohl etal., 2020) JEM-1 9234 (0.04) | 46.08 4971 7893 90.17 4549(0.04) | 671 -216
3 (Grathwohl et al., 2020) JEM-0 92.82 (0.02) 4298 47.74 82.92 89.52  42.55(0.07) 50.8 -8.2

Croce et. al., Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks, ICML'20



Part 1

A Quick Start to Neural Network Verification



The concept of Verification

Katz et. al., Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, CAV'17
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The concept of Verification

Sound: if verified, then must be correct; if not verified, potentially be correct/incorrect.

Complete: if correct, then must be verified.

Complete and sound is desirable: but NP-hard in neural network verification.

Katz et. al., Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, CAV'17
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Abstract Interpretation

C A C A
i ¥ _ _
Verify that the following
program never throws type
error.
o
o Int x, y, z;
Relationship 1: Relationship 2: Z = X+Y,
abstracting followed by concretizing concretizing followed by abstracting

X -> Int
Poison Test: find a poisonous bottle inside N bottles. y -> int
Randomly mix N/2 bottles and test: int + int -> int

Positive -> contain poison
Negative -> no poison

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/10.ABSTRACT-INTERPRETATION.html



Abstract Interpretation for Neural Net
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Gehr et. al., Al Safety and Robustness Certification of Neural Networks with Abstract Interpretation, SP’18



Abstract Interpretation for Neural Net
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Sound but incomplete

Gehr et. al., Al Safety and Robustness Certification of Neural Networks with Abstract Interpretation, SP’18



Box Domain

Relax the exact set as a hyper-box (interval).

Imprecise for both linear and RelLU layers.

la,b] + [c,d] = [a+ b, c + d]
RelLU(la,b]) = [ReLU(a), ReLU(b)]

la,b]l — |c,d]| =|a—d,b — ]

Gehr et. al., Al Safety and Robustness Certification of Neural Networks with Abstract Interpretation, SP’18



Zonotope Domain

Relax the exact set as a zonotope.

Precise for linear but imprecise for ReLU layers. ; X;

a'x+b+c'le,e= €1, €5, ..., €]

Wong et. al., Provable defenses against adversarial examples via the convex outer adversarial polytope, ICML'18



DeepPoly/CROWN Domain

Relax the exact set as linear constraints.

Precise for linear but imprecise for ReLU layers.

U
ReLU(x) > 0, ReLU(x) < y l(x — 1) ¢ ReLU(x) >x, ReLU(x) < . l(x — [)
—_— : U —

Singh et. al., An Abstract Domain for Certifying Neural Networks, POPL'19
Zhang el. al., Efficient Neural Network Robustness Certification with General Activation Functions, NeurlPS'18 10



Triangle Domain

Relax the exact set as linear constraints.
Precise for linear but imprecise for ReLU layers.

The most precise convex domain.

X : ReLU(x) > 0O,
' ReLU(x) > x,

ReLU(x) <

Ehler, Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, ATVA' 17

u— |

(x—1).

11



Complete Verification

Encode the ReLU as a Mixed Integer Linear Programming (MILP).

Complete but NP-hard to solve.

Branch-and-Bound (BaB) for solving.

Y

y = max(0, )

Y

y = max(0, x)

Bunel et. al., Branch and Bound for Piecewise Linear Neural Network Verification, JMLR'20

Uy L,

Uy

12



CNN /ResNet Complex

FC

Scale of Verification: VNN’22

A

Name

Carvana UNet

VGGNet 16
Cifar Biasfield
Large ResNet
Collins Rul CNN
oval21

ResNet A/B

{ MNIST FC

Network Type
Complex U-Net
Conv + RelLU + MaxPool
Conv + RelLU
ResNet (Conv + RelLU)
Conv + RelLU
Conv + RelLU

ResNet (Conv + RelLU)

FC + ReLU

# Parms
150k - 330 k
138M
363k
1.3M - 7.9M
60k - 262k
54k - 214k

354k

270k - 530k

# Neurons
275k - 373k
13.6 M
45k
55k - 286k
5.5k - 28k
3.1k - 6.2k

11k

512 - 1536

Input Dim Domain

5828 BaB* with DeepPoly
164Kk Box + DeepPoly
16 BaB* with DeepPoly
3k-9k BaB* with DeepPoly
400-800 BaB* with DeepPoly
3072 BaB* with DeepPoly
3072 BaB* with DeepPoly
784 BaB* with DeepPoly +

MILP refinement

* BaB is implemented via KKT

13
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verify.

14



Take-away

 Neural network verification is challenging: a general network is NP-hard to
verify.

 Many abstract domains are designed to scale the verification in the cost
of completeness.

14



Take-away

 Neural network verification is challenging: a general network is NP-hard to
verify.

 Many abstract domains are designed to scale the verification in the cost
of completeness.

* In general, more precise domains require more space and more
computation, thus less scalable.

14



Part 2

Connecting Certified and Adversarial Training



Training for Robustness



Training for Robustness

Expected Loss

0 = argmink, | L(x, y)

0

16



Training for Robustness

0 = arg minE, L(x,y) *
0

10



Training for Robustness

Expected Worst-

case Loss

Expected Loss

0 = argmink, | L(x,y) * 0 = argmink, [ max L (x',Y)]

0 0 x'€B(x,¢)



Training for Robustness

0 = argmink, | L(x,y) * 0 = argmink, [ max L (x',Y)]

0 0 x'€B(x,¢)

Expected Worst-

case Loss




Adversarial Training

0 = arg mink, lL (x’,y)]
0

x' € B(x, €)

17



Adversarial Training

0 = arg mink, lL (x’,y)]

0
x' € B(x, €)
Input " Output y*°
Adversarial example
incorrect
correct

qga%_,..._,ga /
| aef

17



Certified Training




Certified Training

6 = arg min =N lL (B(x, €), y)]
0



Certified Training

0 = argminE, lL (B(x, G)J)]

0
1 ) Output y~
nputz” vu

i- |- Box relaxation
W W__W_
| : _ :
|
I | . 8 S .é . s 8 S : incorrect
| ' ' aa | correct
I I |
I I |
| | |

|



Research Question

Gowal et al. "Scalable verified training for provably robust image classification." ICCV 2019.
Mirmann et al. "Differentiable abstract interpretation for provably robust neural networks." ICML 2018.
Shi et al. "Fast certified robust training with short warmup." NeulPS 2021.
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Research Question

* Adversarial training has good empirical robustness, but is hard to certify.

* Certified Training (Interval Bound Propagation, SOTA in 2021) has good
certified robustness, but at the cost of greatly reduced standard accuracy.

e Can we combine these two, so that we have both better certified
robustness and better standard accuracy than IBP?

e The answer is YES!

Gowal et al. "Scalable verified training for provably robust image classification." ICCV 2019.
Mirmann et al. "Differentiable abstract interpretation for provably robust neural networks." ICML 2018.
Shi et al. "Fast certified robust training with short warmup." NeulPS 2021.
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Small Adversarial Bound Regions

A

Input z Output vy
Box relaxation

- 1 |
5 O ., 3 - O incorrect

[ O [
asf correct
S

Mdller et al. "Certified Training: Small Boxes are All You Need." ICLR 2023.
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Small Adversarial Bound Regions

A
Input z" Output y
Box relaxation
- .
Iy N N — B incorrect
¥ Q [
a correct
¢
Frequency
1 IBP
PGD
SABR
m
—0.5 0.0 0.5 1.0

Loss Approximation Error

Mdller et al. "Certified Training: Small Boxes are All You Need." ICLR 2023.
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Small Adversarial Bound Regions

A
Input z Output y
Box relaxation
- .
Iy N N — B incorrect
= o =
aut correct
S
Frequency
Accuracy [%]
100-
1 BP o Standard
~ A = S mm Ad il

PGD 60 - - versari

SABR — : MN-BAB

40- ,— B DeepPoly

e 20- / = 5ox
—0.5 0.0 0.5 1.0 0
Loss Approximation Error 0.01 0.10 1.00
A

Mdller et al. "Certified Training: Small Boxes are All You Need." ICLR 2023.



Training via Adversarially Propagating Subnetworks

Full Network f

> -
- -l
P>z >P—>.—>. E—>3 >0

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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Training via Adversarially Propagating Subnetworks
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Training via Adversarially Propagating Subnetworks

Embedding Space
Input x I X 1
T IBP
I : » fE N 1 _1
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Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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Training via Adversarially Propagating Subnetworks

Embedding Space
Input x I . 1
T IBP
* : g fE > 2] . f C
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)

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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Training via Adversarially Propagating Subnetworks

Embedding Space
Input x I - 1
~—— IBP PGD
l 0 > IB g i1 2 T fc
— _zi —
=

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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Training via Adversarially Propagating Subnetworks

r——"F=="""=7-"

_________

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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~—=L_ Exact propagation

i
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Training via Adversarially Propagating Subnetworks
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Training via Adversarially Propagating Subnetworks
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Training via Adversarially Propagating Subnetworks
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Training via Adversarially Propagating Subnetworks

Embedding Space Output
Input x e e

————————— Z2 :
o ry T ponssato
| | | | | .
l : | | : \k‘\ Exact propagation
T : l : N |

: Ly B z ' J

| ' .

: ¥- 2 e | . M

REERRRREE Gradient Connector .~ "7 .. ... Training Loss £

Connecting Adversarial
Examples with Bounds

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23

23



Training via Adversarially Propagating Subnetworks
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Training via Adversarially Propagating Subnetworks
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Precise Approximation

Mao et. al., Connecting Adversarial and Certified Training, NeurlPS’23
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Precise Approximation
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Complement Previous SOTA

Small Adversarial Bound Regions
+Training via Adversarially Propagating Subnetworks

(SABR+TAPS=STAPS)
Input x° Latent Space z' Output y~
e ; 1 Box relaxation
_________ | Adversarial example
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I
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—{— Exact propagation

Plot taken from SABR paper.
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Empirical Results
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Take-away

 \We develop TAPS, a framework that sequentially connects certified and
adversarial training to yield more precise approximation of the worst-case
error.
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Take-away

 \We develop TAPS, a framework that sequentially connects certified and
adversarial training to yield more precise approximation of the worst-case
error.

 \We present the idea of gradient connector, a novel tool for connecting
their gradients and thus enable joint training.
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Part 3

Understanding the Success of Interval Bound
Propagation



Research Question

Baader et. al., Universal Approximation with Certified Networks, ICLR’20
Wang et. al., Interval Universal Approximation for Neural Networks, POPL’22
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Research Question

e |nterval Bound Propagation (IBP) and IBP-based methods get SOTA
certified accuracy than more precise domains.

* There exists a neural network that approximates every continuous

function and IBP bounds are nearly optimal, up to € error. However,
finding this network is strictly harder than NP-complete problems.

 Understanding how IBP works with the least tight relaxation is critical to
future development.

Baader et. al., Universal Approximation with Certified Networks, ICLR’20
Wang et. al., Interval Universal Approximation for Neural Networks, POPL’22
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Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Notions

. Layer-wise Approximation Box'(f, B¢(x)) = [_ZT,ZT]:
apply optimal approximation layer-wisely, i.e., IBP
approximation.
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Notions

. Layer-wise Approximation Box'(f, B¢(x)) = [_ZT,ZT]:
apply optimal approximation layer-wisely, i.e., IBP
approximation.

- Optimal Approximation Box™(f, B (x)): smallest hyper-
box [2*,Z2*] such that f(x") € [z, T*], Vx' € B (x).
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Notions

. Layer-wise Approximation Box'(f, B¢(x)) = [_ZT,ZT]:
apply optimal approximation layer-wisely, i.e., IBP
approximation.

- Optimal Approximation Box™(f, B (x)): smallest hyper-
box [2*,Z2*] such that f(x") € [z, T*], Vx' € B (x).

* Propagation Invariance: a network is propagation
invariant if Box"(f, B¢(x)) = Box*(f, B¢(x)), i.e., IBP is
exact.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Notions

. Layer-wise Approximation Box'(f, B¢(x)) = [_ZT,ZT]:
apply optimal approximation layer-wisely, i.e., IBP
approximation.

A
O
- Optimal Approximation Box™(f, B (x)): smallest hyper- s
box [z*,Z*] such that f(x") € [z",Z*], Vx' € B¢(x). T - > o
- Propagation Invariance: a network is propagation h\\ ](E)xztllcri1 .
invariant if BOXT(f, BG(X)) — BOX*(f, BG(X)), |e, IBP is R aatt ~— Lgyer_Wlse
exact.

- Propagation Tightness: 7 = (z* — %)/ T — z"), i.e., the
ratio of optimal and layer-wise box sizes.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Explicit IBP for Deep Linear Network (DLN)

L
» For DLN f = H W% and input box with radius €, the size of approximations are:
k=1

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24

31



Explicit IBP for Deep Linear Network (DLN)

L
» For DLN f = H W% and input box with radius €, the size of approximations are:
k=1

zF—z" =2 | W®| e

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Explicit IBP for Deep Linear Network (DLN)

L
» For DLN f = H W% and input box with radius €, the size of approximations are:
k=1

zF—z" =2 | W®| e

7 -zt =2 (Hlk;l w® ) €

* DLN with all non-negative weights is propagation invariant.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Propagation Invariance

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Propagation Invariance

. A two-layer DLN f = W®WW is propagation invariant if and only if Wi(i) | nglj) > () for
all k or Wl.(i) : ng.) < 0O for all k.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Propagation Invariance

. A two-layer DLN f = W®WW is propagation invariant if and only if W(Z) W(l) > () for
all kor W& . W) < 0 for all k.
1.k k,j

- A two-layer DLN f = W®WW is not propagation invariant if

(W(Z)W(l))ij (W(Z)W(l))ij’ <W(2)W(1))i’j (W(Z)W(l))l P < 0 for some i, j.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Propagation Invariance

. A two-layer DLN f = W®WW is propagation invariant if and only if W(Z) W(l) > () for
all kor W2 . W) < 0 for all k.
1.k k,j

- A two-layer DLN f = W®WW is not propagation invariant if

(W(Z)W(l))ij (W(Z)W(l))ij’ <W(2)W(1))i’j (W(Z)W(l))l P < 0 for some i, j.

. WEWW = ( 13 i) -> not propagation invariant.

- A two-layer propagation invariant DLN has O(/N) degree of freedom for parameter signs,
while a general two-layer DLN has O(N?).

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Box Reconstruction Error

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Box Reconstruction Error

 For linearly separable data, PCA (optimal) weights
lead to linear growth of layer-wise box size and
sgrt growth of optimal box size with regard to
iInstrinsic dimension.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Box Reconstruction Error

Radius Ratio
15-

+ For linearly separable data, PCA (optimal) weights — Optimal

lead to linear growth of layer-wise box size and 10 [BP
sgrt growth of optimal box size with regard to -
Instrinsic dimension.

ra

0 - -
0 10
Width

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Tightness at Initialization

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Tightness at Initialization

 For two-layer DLN with weights sampled from I1.1.d.
Gaussian distribution and hidden dimension d,

tightness decreases in squared root order of d-

T =0 %)

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Tightness at Initialization

» For two-layer DLN with weights sampled from i.i.d. -0+ B
Gaussian distribution and hidden dimension d,
tightness decreases in squared root order of d: 107" .
T=0d"). DiN
10_122'4 o7 510

Width

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Tightness at Initialization

» For two-layer DLN with weights sampled from i.i.d. -0+ B
Gaussian distribution and hidden dimension d,
tightness decreases in squared root order of d: 107" .
T=0d"). DiN
10_122'4 o7 510

Width

- For L-layer DLN randomly initialized with i.i.d.
Gaussian and minimum hidden dimension d,

tightness decreases in exponential order of L:

T = O(d~ V4,

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Tightness at Initialization

 For two-layer DLN with weights sampled from I1.1.d.
Gaussian distribution and hidden dimension d,

tightness decreases in squared root order of d-

T =0 %)

- For L-layer DLN randomly initialized with i.i.d.
Gaussian and minimum hidden dimension d,

tightness decreases in exponential order of L:

T = O(d~ V4,

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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IBP Increases lightness

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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IBP Increases lightness

. 1f Box"(f, B¢(x)) deviates too much

from Box*(f, B¢(x)), then the gradient
difference between |IBP and standard
loss is aligned with an increase In
tightness, i.e., IBP-trained models have
larger tightness.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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IBP Increases lightness

Tightness
1.0-
e |f BOXT( [, B€(x)) deviates too much 0.8- 1
from Box*( f, B¢(x)), then the gradient " \
difference between IBP and standard | Ir decay
loss is aligned with an increase in 0.4- end Of anneal
tightness, i.e., IBP-trained models have
larger tightness. 0.2- 2/235
8/255
0.0- =~
0 20 40 60 80 100 120 140 160
Epochs

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24 35



Generalization to Trained RelLLU Nets

Width brings less regularization than depth.

Accuracy (%) Accuracy (70)
T1ghtness Tlghtness

07- -
o1 5 7 9 11 13

Wldth Depth

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Generalization to Trained RelLLU Nets

Dataset

€

Method Width Accuracy Certified

MNIST

0.1

IBP

SABR

0.3

IBP

SABR

Width-scale Rule
Predicts Better Models.

CIFAR-10

IBP

IBP-R

SABR

IBP

SABR

TinyImageNet

IBP

SABR

1Xx
4 x

1x
4 x

1%
4 x

1%
4%

1x
2 X

1Xx
2 X

1%
2X

1x
2%

1X
2X

0.5%
1x

2X

0.5%
1x
2 X

98.83
98.86

98.99
98.99

97.44
97.66

98.82
98.48

67.93
68.06

78.43
80.46

79.24
79.89

47.35
47.83

50.78
51.56

24.47
25.33
25.40

27.56
28.63
28.97

98.10
98.23

98.20
98.32

93.26
93.35

93.38
93.85

55.85
56.18

60.87
62.03

62.84
63.28

34.17
33.98

34.12
34.95

18.76
19.46
19.92

20.54
21.21
21.36

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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Generalization to Trained RelLLU Nets

Accuracy (70) Certified Accuracy (%) Tightness
30 - 30 - 1.0
60 - 60 - 0.8- 0.981
P 0.6 -
- E PGD 40 -
IBP 0.4- 0.085
107 1077 10~ ! 1072 107 101 1072 1073 10~
€ € €

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24 38



Generalization to Trained RelLLU Nets

Larger input box leads to larger tightness.

Accuracy (70) Certified Accuracy (%) Tightness
30 - 30 - 1.0
60 - 60 - 0.8- 0.981
P 0.6 -
- E PGD 40 -
IBP 0.4- 0.085
107 1077 10~ ! 1072 107 101 1072 1073 10~
€ € €
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Generalization to Trained RelLLU Nets

Larger input box leads to larger tightness.

Propagation Invariance is associated with strong regularization.

Accuracy (70) Certified Accuracy (%) Tightness
]0) - ]0) - 1.0-
60 - 60 - 0.8- 0.981
p 0.6-
- E PGD 40 -
[BP 0.4- 0.085
1075 1073 1071 " 107° 1073 10°t 107" 1077 10~
€ € €
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Generalization to Trained RelLLU Nets

Larger input box leads to larger tightness.

Propagation Invariance is associated with strong regularization.
IBP > SABR > PGD consistently in terms of tightness.

Accuracy (70) Certified Accuracy (%) Tightness
30 - 30 - 1.0-
-~ ‘ = ’?
60 - £, 60 - 0.8- = 0.981
p | 0.6- |
- E PGD = 40-
IBP | 0.4+ v 0.085
207 %~ SABR 20 T 02 g /
107 1073 10! " 107° 1073 0=t 107 10~ 10~

€ € €

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24 38



IBP-based vs non-IBP-based

Method € Accuracy Tightness Certified
2/255 81.2 0.001 -
PGD  ¢nss  69.3 0.007 -
2/255 78.4" 0.009 60.7"
COLT 8/255 51.7" 0.057 26.7"
2/255 78.2" 0.033 62.0"
[BP-R 8/255 51.4" 0.124 27.9"
2/255 75.6 0.182 57.7
SABR  enss 489 0.950 31.9
mp 2255 63.0 0.803 51.3
8/255 42.9 0.977 31.0

* Literature result.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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IBP-based vs non-IBP-based

* |IBP-based methods get Method € Accuracy Tightness Certified
significantly larger tightness pGp  2/255 81.2 0.001 .
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IBP-based vs non-IBP-based

* |IBP-based methods get Method € Accuracy Tightness Certified
significantly larger tightness pGp  2/255 81.2 0.001 .
(17x to 80Xx). 8/255  69.3 0.007 -

. | colt 2255 184 0.009 60.7"

* Certified method with no 8/255  51.7° 0.057 26.7"
IBP component (COLT) still mpp 2255 7820 0033 62.0"
has significantly larger 8/255 514 0.124 27.9°
tightness than PGD (8x). SABR  2/255 75.6 0.182 57.7

8/255  48.2 0.950 31.2
mp 2255 63.0 0.803 51.3
8/255  42.2 0.977 31.0

* Literature result.

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24

39



IBP-based vs non-IBP-based

* |IBP-based methods get Method € Accuracy Tightness Certified
significantly larger tightness pGp  2/255 81.2 0.001 .
(17x to 80Xx). 8/255  69.3 0.007 .

. | colt 2255 184 0.009 60.7"

* Certified method with no 8/255  51.7° 0.057 26.7"
IBP component (COLT) still mp.R 2255 78.2" 0.033 62.0"
has significantly larger 8/255 514 0.124 27.9°
tightness than PGD (8x). SABR  2/255 75.6 0.182 57.7

8/255  48.2 0.950 31.2

o Large tightness seems gp  2/255 63.0 0.803 51.3

8/255 422 0.977 31.0

necessary for large € (see
SABR).

Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24

* Literature result.
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Take-away

* \We quantify Interval Bound Propagation, the key component of all SOTA
methods in recent years, in terms of approximation error.
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* \We quantify Interval Bound Propagation, the key component of all SOTA
methods in recent years, in terms of approximation error.

* \We theoretically prove that (1) it leads to strong regularization on the
parameter signs, (2) it requires more model capacity, and (3) it benefits
more from width than depth.
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Take-away

* \We quantify Interval Bound Propagation, the key component of all SOTA
methods in recent years, in terms of approximation error.

* \We theoretically prove that (1) it leads to strong regularization on the
parameter signs, (2) it requires more model capacity, and (3) it benefits
more from width than depth.

 Based on our insights, we explain the improvement of recent SOTA over
IBP and successfully push SOTA further by simply increasing the model
width.
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Part 4

The Future of (Deterministic) Neural
Network Verification



Infeasibility of Single-Neuron Relaxation

Baader et. al., Expressivity of ReLU-networks Under Convex Relaxation, ICLR’24.
Ferrari et. al., Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound, ICLR’22.
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Infeasibility of Single-Neuron Relaxation

 The most precise single-neuron convex relaxation (triangle) is unable
to precisely encode max(x;, x,) with arbitrary ReLU network.

Baader et. al., Expressivity of ReLU-networks Under Convex Relaxation, ICLR’24.
Ferrari et. al., Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound, ICLR’22.
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Infeasibility of Single-Neuron Relaxation

 The most precise single-neuron convex relaxation (triangle) is unable
to precisely encode max(x;, x,) with arbitrary ReLU network.

* Multi-neuron relaxation is key to designing future verifiers.

Baader et. al., Expressivity of ReLU-networks Under Convex Relaxation, ICLR’24.
Ferrari et. al., Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound, ICLR’22.
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Bad Gradients from Precise Relaxation

Jovanovic et. al., On the paradox of certified training, TMLR’22.

Relaxation Tightness Certified (%)
IBP / Box 0.73 86.8
hBox / Symbolic Intervals 1.76 83.7
CROWN / DeepPoly 3.36 70.2
DeepZ / CAP / FastLin / Neurify 3.00 69.8
CROWN-IBP (R) 2.15 75.4
—— IBP  —— CROWN —— CROWN-IBP (R)
hBox  —— DeepZ

o W

= \

>

O

200

(T) h\‘\i

E /

~300 B

~0.04 —0.02 0.00 0.02 0.04
Weight shift (5)
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Bad Gradients from Precise Relaxation

Relaxation Tightness Certified (%)
 While being the least precise, IBP / Box 0.73 36,8
IBP tralnlng gets better results hBox / Symbolic Intervals 1.76 83.7
than all the other precise CROWN / DeepPoly 3.36 70.2
domains. DeepZ / CAP / FastLin / Neurify 3.00 69.8
CROWN-IBP (R) 2.15 75.4
—— IBP  —— CROWN —— CROWN-IBP (R)

hBox —— DeepZ
~100- w

—200+ ﬁ‘\\_“ /

~300- B

Lower Bound

—~0.04 ~0.02 0.00 0.02 0.04

Weight shift ()
Jovanovic et. al., On the paradox of certified training, TMLR’22.



Bad Gradients from Precise Relaxation

Relaxation Tightness Certified (%)
 While being the least precise, IBP / Box 0.73 86,8
IBP tralnlng gets better results hBox / Symbolic Intervals 1.76 83.7
than all the other precise CROWN / DeepPoly 3.36 70.2
domains. DeepZ / CAP / FastLin / Neurify 3.00 69.8
CROWN-IBP (R) 2.15 75.4
 More precise methods with
— |BP — CROWN — CROWN-IBP (R)

decent gradient quality is key to hBox  —— DeepZ
future certified training methods, 100 W
e.9., SABR and TAPS. I

L

e

—300

Lower Bound

—~0.04 ~0.02 0.00 0.02 0.04

Weight shift ()
Jovanovic et. al., On the paradox of certified training, TMLR’22.



