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Empirical Robustness

2

Goodfellow et. al., Explaining and Harnessing Adversarial Examples, ICLR’15 
Eykholt et. al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR’18



Towards Certified Robustness

3Croce et. al., Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks, ICML’20



Part 1 

A Quick Start to Neural Network Verification
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The concept of Verification

5Katz et. al., Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, CAV’17

Sound: if verified, then must be correct; if not verified, potentially be correct/incorrect.

Complete: if correct, then must be verified.

Complete and sound is desirable: but NP-hard in neural network verification.
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int x, y, z; 
z = x+y;

Verify that the following 
program never throws type 

error:

x -> int
y -> int

int + int -> int
Poison Test: find a poisonous bottle inside N bottles.

Randomly mix N/2 bottles and test:
Positive -> contain poison

Negative -> no poison
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7Gehr et. al., AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, SP’18

Sound but incomplete



Box Domain

8Gehr et. al., AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, SP’18

Relax the exact set as a hyper-box (interval). 

Imprecise for both linear and ReLU layers.

[a, b] + [c, d] = [a + b, c + d]
ReLU([a, b]) = [ReLU(a), ReLU(b)]

[a, b] − [c, d] = [a − d, b − c]



Zonotope Domain

9Wong et. al., Provable defenses against adversarial examples via the convex outer adversarial polytope, ICML’18

Relax the exact set as a zonotope. 

Precise for linear but imprecise for ReLU layers.

a⊤x + b + c⊤e, e = [ϵ1, ϵ2, …, ϵn]



DeepPoly/CROWN Domain

10
Singh et. al., An Abstract Domain for Certifying Neural Networks, POPL’19 
Zhang el. al., Efficient Neural Network Robustness Certification with General Activation Functions, NeurIPS’18 

Relax the exact set as linear constraints. 

Precise for linear but imprecise for ReLU layers.

ReLU(x) ≥ 0, ReLU(x) ≤
u

u − l
(x − l) ReLU(x) ≥ x, ReLU(x) ≤

u
u − l

(x − l)



Triangle Domain

11Ehler, Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, ATVA’17

Relax the exact set as linear constraints. 

Precise for linear but imprecise for ReLU layers. 

The most precise convex domain.

ReLU(x) ≥ 0,
ReLU(x) ≥ x,

ReLU(x) ≤
u

u − l
(x − l) .



Complete Verification

12Bunel et. al., Branch and Bound for Piecewise Linear Neural Network Verification, JMLR’20

Encode the ReLU as a Mixed Integer Linear Programming (MILP). 

Complete but NP-hard to solve. 

Branch-and-Bound (BaB) for solving.



Scale of Verification: VNN’22

13
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• Neural network verification is challenging: a general network is NP-hard to 
verify.

• Many abstract domains are designed to scale the verification in the cost 
of completeness.

• In general, more precise domains require more space and more 
computation, thus less scalable.
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θ
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NP-hard

IBP
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Mirmann et al. "Differentiable abstract interpretation for provably robust neural networks." ICML 2018.
Shi et al. "Fast certified robust training with short warmup." NeuIPS 2021.

Research Question
• Adversarial training has good empirical robustness, but is hard to certify.

• Certified Training (Interval Bound Propagation, SOTA in 2021) has good 
certified robustness, but at the cost of greatly reduced standard accuracy.

• Can we combine these two, so that we have both better certified 
robustness and better standard accuracy than IBP?

• The answer is YES!

19
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Complement Previous SOTA

25Mao et. al., Connecting Adversarial and Certified Training, NeurIPS’23

Small Adversarial Bound Regions  
+Training via Adversarially Propagating Subnetworks 

(SABR+TAPS=STAPS)

Plot taken from SABR paper. 
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Take-away

27

• We develop TAPS, a framework that sequentially connects certified and 
adversarial training to yield more precise approximation of the worst-case 
error.

• We present the idea of gradient connector, a novel tool for connecting 
their gradients and thus enable joint training.



Part 3 

Understanding the Success of Interval Bound 
Propagation
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Research Question

• Interval Bound Propagation (IBP) and IBP-based methods get SOTA 
certified accuracy than more precise domains.

• There exists a neural network that approximates every continuous 
function and IBP bounds are nearly optimal, up to  error. However, 
finding this network is strictly harder than NP-complete problems.

ϵ

• Understanding how IBP works with the least tight relaxation is critical to 
future development.

29

Baader et. al., Universal Approximation with Certified Networks, ICLR’20
Wang et. al., Interval Universal Approximation for Neural Networks, POPL’22
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box  such that .
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[z*, z*] f(x′￼) ∈ [z*, z*], ∀x′￼ ∈ Bϵ(x)

• Propagation Invariance: a network is propagation 
invariant if , i.e., IBP is 
exact.

Box†( f, Bϵ(x)) = Box*( f, Bϵ(x))

• Propagation Tightness: , i.e., the 
ratio of optimal and layer-wise box sizes.

τ = (z* − z*)/(z† − z†)

30Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

31Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

• For DLN   and input box with radius , the size of approximations are:f =
L

∏
k=1

W(k) ϵ

31Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

• For DLN   and input box with radius , the size of approximations are:f =
L

∏
k=1

W(k) ϵ

z* − z* = 2 ΠL
k=1W

(k) ϵ

31Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

• For DLN   and input box with radius , the size of approximations are:f =
L

∏
k=1

W(k) ϵ

z* − z* = 2 ΠL
k=1W

(k) ϵ

 z† − z† = 2 (ΠL
k=1 W(k) ) ϵ

31Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24



Explicit IBP for Deep Linear Network (DLN)

• For DLN   and input box with radius , the size of approximations are:f =
L

∏
k=1

W(k) ϵ

z* − z* = 2 ΠL
k=1W

(k) ϵ

 z† − z† = 2 (ΠL
k=1 W(k) ) ϵ

•DLN with all non-negative weights is propagation invariant.

31Mao et. al., Understanding Certified Training with Interval Bound Propagation, ICLR’24
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k,j ≥ 0
k W(2)

i,k ⋅ W(1)
k,j ≤ 0 k

•A two-layer DLN   is not propagation invariant if
 for some .

f = W(2)W(1)

(W(2)W(1))i,j (W(2)W(1))i,j′￼
(W(2)W(1))i′￼,j (W(2)W(1))i′￼,j′￼

< 0 i, j

•  ➔ not propagation invariant.W(2)W(1) = ( 1 2
−3 4)

• A two-layer propagation invariant DLN has  degree of freedom for parameter signs, 
while a general two-layer DLN has .

O(N)
O(N2)
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Box Reconstruction Error

• For linearly separable data, PCA (optimal) weights 
lead to linear growth of layer-wise box size and 
sqrt growth of optimal box size with regard to 
instrinsic dimension.
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Tightness at Initialization
• For two-layer DLN with weights sampled from i.i.d. 

Gaussian distribution and hidden dimension , 
tightness decreases in squared root order of : 

.

d
d

τ = Θ(d−1/2)
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• For -layer DLN randomly initialized with i.i.d. 
Gaussian and minimum hidden dimension , 
tightness decreases in exponential order of : 

.

L
d
L

τ = O(d−⌊L/4⌋)
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tightness decreases in exponential order of : 
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IBP Increases Tightness

• If  deviates too much 
from , then the gradient 
difference between IBP and standard 
loss is aligned with an increase in 
tightness, i.e., IBP-trained models have 
larger tightness.

Box†( f, Bϵ(x))
Box*( f, Bϵ(x))
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Generalization to Trained ReLU Nets
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Generalization to Trained ReLU Nets
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Generalization to Trained ReLU Nets
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Larger input box leads to larger tightness.
Propagation Invariance is associated with strong regularization.

IBP > SABR > PGD consistently in terms of tightness.
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• IBP-based methods get 
significantly larger tightness 
(17x to 80x).
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IBP-based vs non-IBP-based

39

• IBP-based methods get 
significantly larger tightness 
(17x to 80x).

• Certified method with no 
IBP component (COLT) still 
has significantly larger 
tightness than PGD (8x).

• Large tightness seems 
necessary for large  (see 
SABR).

ϵ
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Take-away

40

• We quantify Interval Bound Propagation, the key component of all SOTA 
methods in recent years, in terms of approximation error.

• We theoretically prove that (1) it leads to strong regularization on the 
parameter signs, (2) it requires more model capacity, and (3) it benefits 
more from width than depth.

• Based on our insights, we explain the improvement of recent SOTA over 
IBP and successfully push SOTA further by simply increasing the model 
width.
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Baader et. al., Expressivity of ReLU-networks Under Convex Relaxation, ICLR’24.
Ferrari et. al., Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound, ICLR’22.

• The most precise single-neuron convex relaxation (triangle) is unable 
to precisely encode  with arbitrary ReLU network.max(x1, x2)

• Multi-neuron relaxation is key to designing future verifiers.
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domains.



Bad Gradients from Precise Relaxation

43Jovanovic et. al., On the paradox of certified training, TMLR’22.

• While being the least precise, 
IBP training gets better results 
than all the other precise 
domains.

• More precise methods with 
decent gradient quality is key to 
future certified training methods, 
e.g., SABR and TAPS.


